1. feladat
A bankban elhelyezünk január 7-én 35 eFt-ot 12%-os kamatláb mellett. A pénzt május 15-én vesszük fel.
Mennyi pénzt kapunk?
januárból 23 nap
február - április 90 nap
május 14 nap
Összesen 127 nap
(35.000 * 0,12 * 127) / 360 = 1.481,6 = 1.482 Ft a kamat
35.000 + 1.482 = 36.482 Ft-ot kapunk.
2. feladat
Egy betétkönyvben az év során történt változások:
Január 1-jén nyitóérték | 50.000 Ft |
Betétek: | |
- március 28. | 40.000 Ft |
- augusztus 8. | 30.000 Ft |
- szeptember 13. | 20.000 Ft |
- december 4. | 10.000 Ft |
Kivétek: | |
- október 10. | 35.000 Ft |
Mennyi a betét összege kamatokkal együtt az év végén, ha a kamatláb 10%?
Pénzösszeg (Ft) | Befizetés napja | Futamidő | Kamatszám | Kulcsszám |
50.000 | január 1. | 360 | 180.000 | 36 |
40.000 | március 28. | 272 | 108.800 | 36 |
30.000 | augusztus 8. | 142 | 42.600 | 36 |
20.000 | szeptember 13. | 107 | 21.400 | 36 |
10.000 | december 4. | 26 | 2.600 | 36 |
- 35.000 | október 10. | 81 | - 28.350 | 36 |
Összesen: | --- | --- | 327.050 | --- |
Kamatszám = (betét * futamidő) / 100
Kulcsszám = 360 / kamatláb
Kamat = kamatszám / kulcsszám = 327.050 / 36 = 9.034,73 = 9.085
Betét összege év végén: 50.000 + 40.000 + 30.000 + 20.000 + 10.000 - 35.000 + 9.085 = 124.085 Ft
3. feladat
Mennyi pénzünk lesz 5 év múlva a bankban, ha 50.000 Ft-ot 18%-os kamatláb mellett helyezünk el?
kamatos kamat = C0 * ( 1 + r )t C0 = indulótőke
( 1 + r ) = kamatláb
t = évek száma
FV = 50.000 * ( 1 + 0,18 )5 = 114.387,9 = 114.388 Ft-unk lesz 5 év múlva.
4. feladat
1998. január 21-én elhelyezünk a bankban 100.000 Ft-ot. Hány forintunk lesz 2002. június 21-én, ha a teljes évekre 18%-os, a tört évekre 12%-os kamatlábbal számol a bank?
vegyes kamatszámítás
FV = C0 * { 1 + [(r*t) / 360] } * (1 + r )t * { 1 + [(r*t) / 360] }
C0 = indulótőke
1 + [(r*t) / 360] = tört év
(1 + r )t = teljes év
FV = 100.000 * { 1 + [(0,12 * 339) / 360] } * (1 + 0,18)3 * { 1 + [( 0,12 * 171) / 360] }
FV = 100.000 * [1 + (40,68 /360) ] * 1,183 * [1+ (20,52 /360) ]
FV = 100.000 * (1 + 0,113) * 1,643032 * (1 + 0,057)
FV = 100.000 * 1,113 * 1,643032 * 1,057
FV = 193.293,02 Ft-unk lesz.
5. feladat
Effektív kamatláb
[1 + (0,12 / 4)]4 - 1 = 0,126 = 12,6 %
12% -os kamatláb negyedévenkénti tőkésítése
12% -os kamatlábhoz képest a tényleges kamatláb 0,6%-al magasabb